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Abstract. Recent neutron scattering experiments on CsNiCl3 reveal some features that are not well de-
scribed by the standard nonlinear σ model, nor by numerical simulations, for isolated S = 1 spin chains.
In particular, in real systems at the antiferromagnetic point of the Brillouin zone, the intensity of the
continuum of multiparticle excitations, at T = 6 K, is about 5 times greater than predicted. Also, the
spin gap is higher and the correlation length is smaller than predicted. We propose a theoretical scenario
where the interchain interaction is approximated by an effective staggered magnetic field, and that yields
a correct prediction for the observed quantities.

PACS. 75.10.Jm Quantized spin models – 75.50.-y Studies of specific magnetic materials

About twenty years after the famous “Haldane conjec-
ture” [1], quantum spin chains with Heisenberg antifer-
romagnetic interactions are still attracting much experi-
mental and theoretical interest. Half-integer spin chains
have no spin gap and are quantum critical at T = 0 with
algebraic decay of correlations. Integer spin chains exhibit
instead a large, dynamically generated, spin gap, and the
correlation functions decay exponentially with a finite cor-
relation length. Haldane’s conjecture was proved, in the
continuum limit when the isotropic Heisenberg Hamilto-
nian gets mapped onto an O(3) Nonlinear Sigma Model
(NLσM) [2], by the Zamolodchikovs [3] for the integer-spin
case and by Shankar and Read [4] for the half-odd-integer-
spin case.

For S = 1 chains, the excitation spectrum was pre-
dicted [3] to be dominated by a well-defined, degenerate
S = 1 magnon triplet. Such excitations have been ob-
served in several neutron scattering experiments and, in
the case of NENP [5], they constitute a large part of the
total spectrum.

Subsequent theoretical work [6] has shown that, at the
antiferromagnetic point of the Brillouin zone, above the
single-particle excitation spectrum, there is a continuum
of multiparticle excitations starting at a lower threshold
of 3∆, where ∆ is the Haldane gap. Higher in energy there
are further contributions due to (2n + 1), n > 1 multi-
magnon excitations. The total integrated three-magnon
contribution to the spectral weight near the antiferromag-
netic wave vector turns out to be about 3% of the total
spectral weight.
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These theoretical predictions seem to be at odds with
recent experimental measurements on CsNiCl3 that reveal
a significant spectral weight in the incoherent multiparti-
cle continuum above the coherent magnon peak. At 6 K
the integrated intensity of the continuum around the an-
tiferromagnetic point is about 9(2)% of the total spectral
weight [7]. This result is considerably larger than the 1–3%
weight predicted by numerical simulations [8] and the
O(3) non-linear sigma model for the three-particle contin-
uum [6]. The effects of the coupling between chains have
been considered also in the framework of the RPA, but no
significant increase of the continuum was found [6]. On the
other hand, Tsvelik’s Majorana Fermion theory [9] does
indeed yield a consistent three-particle-scattering contin-
uum [6], but it would require strong biquadratic exchange
interactions of the form (Si ·Si+1)2 that are not in accor-
dance with the measurements on CsNiCl3 [7].

Other measured quantities at T = 6 K show apprecia-
ble deviations from analytical and numerical predictions
at finite temperature on isolated chains [10,11]. In units of
the intrachain exchange coupling J the measured gap ∆ is
higher (∆ = 0.54) and the correlation length ξ is shorter
(ξ = 4.0) than the corresponding theoretical values pre-
dicted by the NLσM for isolated chains (∆ = 0.49 and
ξ = 4.6 respectively). Moreover, with an estimated value
for the spin-wave velocity of c = 2.5, these values violate
the relation ξ∆ = c predicted by the Single-Mode Approx-
imation [12].

Finally, recent experimental findings [7] seem to indi-
cate clearly that the multiparticle continuum sets in at a
two-magnon threshold. This too is at variance with the
theoretical predictions, and has led some authors [7] to
question the overall validity of an effective field theory



490 The European Physical Journal B

description in terms of the NLσM and to hypothesize the
presence of residual spin-1/2 excitations that could be re-
sponsible for the anomalous two-magnon threshold. How-
ever, at the present time there is no clear theoretical sup-
port for the inclusion of additional spin-1/2 degrees of
freedom.

The model Hamiltonian proposed for CsNiCl3 is

H = J

chain∑
i

Si · Si+1 + J ′
plane∑
〈ij〉

Si · Sj + D
∑

i

(Sz
i )2 , (1)

with an estimated intrachain coupling J = 2.28 meV
along the c-axis that is much stronger than the interchain
coupling in the basal plane J ′ = 0.044 meV [13]. The
single-ion anisotropy is estimated to be D ≈ 4 µeV, small
enough that CsNiCl3 may be considered purely isotropic,
and we will set D = 0 henceforth. Below TN = 4.85 K the
system undergoes 3D long-range ordering, caused by the
interchain interaction. For T > TN the system is regarded
as one-dimensional and commonly considered to be a good
realization of a single isotropic spin chain, although there
is a sizable dispersion perpendicular to the chain direction
due to the interchain coupling.

The discrepancies between the predictions of the
NLσM and the experimental findings seem to persist [7]
from T = TN up to about T = T ∗ ∼ 12 K. Above T ∗ (of
course not a sharp but rather a cross-over temperature)
the properties of the system are basically in accordance
with the theoretical predictions for an assembly of isolated
chains. Similar discrepancies have been recently found also
between exact diagonalization studies of S = 1 Heisenberg
chains and neutron scattering experiments [14]. They be-
come evident at the antiferromagnetic point and at low
temperatures (T < 15 K), suggesting that three dimen-
sional effects, due to the interchain coupling J ′, are still
important in this range of temperatures. Since at the crit-
ical point the 3D antiferromagnetic correlation length ξ3D

diverges, it is natural to think that there is an intermediate
range of temperatures, TN < T < T ∗, where ξ3D remains
considerably greater than the correlation length ξ1D of
the single chain. In other words, crossing the critical point
from below does indeed imply destruction of the overall
3D long-range order, except on the scale of the 3D correla-
tion length ξ3D, as long as the latter remains substantially
greater than ξ1D. This fact suggests a simple theoreti-
cal scenario, that can reconcile the experimental results
with the NLσM description, in which three-dimensional
effects are still important and the system is arranged in
large domains with non-zero magnetization, even if the
total staggered magnetization is zero. Thus, in a mean-
field picture, a single chain will experience, in the interval
TN < T < T ∗, an effective staggered magnetic field gen-
erated by the neighboring chains. No matter if the field
is not constant along the whole chain, because it varies
slowly enough on the scale of ξ1D that it may be consid-
ered constant, since the 1D chains are short-ranged. The
same argument can be applied to the time dependence
of fluctuations, which in the vicinity of the critical point
are slow enough to consider the effective magnetic field as

static. This assumption will not affect the physics of the
single chain because of the presence of a relatively large
gap (of the order of J) and because, as we will see later,
the dynamical structure factor is zero for lower frequen-
cies.

In the mean-field approximation the interchain inter-
action is treated then as a staggered magnetic field that
takes into account the effects of the neighboring chains on
the single 1D system. This amounts to the replacement

J ′
plane∑
〈ij〉

Si · Sj =⇒ Hs

∑
i

(−)iSz
i , (2)

where the staggered field (we choose it along the c-axis)
is evaluated self-consistently by means of the fixed-point
equation [15]

Hs = zcJ
′ ms(Hs) , (3)

zc is the coordination number in the basal plane and
ms(Hs) is the magnetization curve of a single chain in
presence of the external staggered field Hs. In our calcula-
tion we fix the energy scale J = 1, the interchain coupling
J ′ = 0.02 as close as possible to the experimental value
for CsNiCl3 and we put zc = 3 because the lattice in the
basal plane is triangular.

So, the Hamiltonian we are going to study is

H =
∑

i

[
J Si · Si+1 + (−1)i Hs Sz

i

]
. (4)

Following the Haldane mapping [2], we represent the
local spin operators as

Si ≈ S(−1)ini + li , |ni|2 = 1 , (5)

where ni represents the slowly-varying local staggered
magnetization and li is the local generator of angular mo-
mentum. In this framework, the Zeeman term of equa-
tion (4) becomes essentially a linear shift in the n-field
along the z-direction, (−1)iHsS

z
i ≈ S Hsn

z
i . The stagger-

ing factor (−1)i has the effect that small momenta of the
n-field correspond to momenta near π of the original spin
variable.

Going then to the continuum limit and integrating out
the fluctuation field l we obtain the O(3) NLσM plus a
linear term [16]

L =
1

2gc

(
c2|∂xn|2 + |∂τn|2

)−S Hsn
z−iλ

(
n2 − 1

)
, (6)

where g = 2/S and c = 2JS. A Lagrange multiplier
λ(x, τ) has been introduced to implement the local con-
straint n2(x, τ) = 1.

The experiments were performed at temperatures
small enough if compared with the exchange interaction
J/kB ≈ 26 K along the chain. Therefore, the 1D chains
(but not the background, of course) are effectively in a
low-temperature phase, and this justifies the use of ground
state calculations, arguing that a finite temperature treat-
ment [10] will give simply a small correction in the calcu-
lated quantities.
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For a constant staggered field, the associated saddle
point will correspond to a constant value of λ and the
self-consistency equation at T = 0 is

3g

2π
ln

{
Λξ +

√
1 + (Λξ)2

}
= 1 −

(
Sg

c

)2

H2
s ξ4 , (7)

where ξ is the correlation length and Λ is the momentum
cutoff of the theory. In the passage to the continuum limit
we have lost the correct renormalization of the parameters.
In order to restore them, we fix the zero-field values of
∆0 = 0.41048 J , ξ = 6.03 (which correspond to c = ξ∆0 =
2.48 J [17]), known from the DMRG studies [18]. The
NLσM coupling has been left to its analytical value g = 2.
As the field is varied, the cutoff Λ is held fixed to its
zero-field value Λ = 0.2072 and we use equation (7) to
determine the value of ξ = ξ(Hs).

The magnetization per site is given by [16]

ms(Hs) = S 〈nz〉 =
gS2

c
ξ2(Hs) Hs . (8)

Putting this back into equation (3), we find a stable so-
lution for Hs = 0.027, corresponding to ms = 0.45 and
ξ = 4.54. It is remarkable that even for a small staggered
field the response of the system is strong, generating an
appreciable magnetization, meanwhile the gap renormal-
izes upward and the correlation length is getting shorter.

The staggered field breaks explicitly the O(3) symme-
try down to O(2) and the quasi-particle propagators in the
longitudinal (in the direction of the field) and in the trans-
verse channels differ notably. The transverse propagator
agrees with the SMA and is given by

GT (q, ωn) =
S2gc

ω2
n + ε2(q)

, (9)

where ωn = 2πn/β are the Matsubara frequencies and
ε(q) is the single-particle energy

ε(q) =
√

c2q2 + ∆2
T , (10)

where ∆T = cξ−1 = 0.545 is the transverse gap and q = 0
corresponds to the antiferromagnetic point. In the trans-
verse channel the theory is purely bosonic and the spec-
tral weight is fully exhausted by this magnon excitation.
In this case, after the analytical continuation to the real
axis, the dynamical structure factor

ST (q, ω) ≡ 1
π

Im GT (q, ω) (11)

is simply given by

ST (q, ω) =
gcS2

2ε(q)
{δ(ω − ε(q)) − δ(ω + ε(q))} · (12)

On the other hand, the longitudinal propagator must
be evaluated more carefully considering its connected part
and explicit calculations [19] give

GL(q, ω) = GT (q, ω)
3Γ̃ (q, ω)

3Γ̃ (q, ω) + 2m2
sGT (q, ω)

, (13)

where Γ̃ (q, ω) is the Fourier transform of the polarization
bubble, i.e. of the product

Γ (x − x′) =
1
S4

GT (x − x′)GT (x′ − x) . (14)

From the study of the analytic structure of the longitudi-
nal propagator [19] it is possible to calculate the relative
longitudinal poles ω = ±εL(q), given by the solution of

ε2
L(q) = ε2

T (q) +
(ms/S)2

Γ1(q, εL(q))
, (15)

where Γ1(q, εL(q)) is the real part of the polarization bub-
ble at ω = ±εL(q). In particular, at the antiferromagnetic
point, we can define a longitudinal gap εL(0) = ∆L and
the quantity Γ1(0, ∆L) may be written as

Γ1(0, ∆L) =
3
4
g

+∞∫
2∆T

dω

π

1√
(ω2 − 4∆2

T )
1

ω2 − ∆2
L

· (16)

For the field strength that we have estimated for CsNiCl3,
we find the value ∆L = 0.779, which is greater than
∆T and consistent with polarized-neutron observations
for weak staggered fields [20]. It is important to stress
that the presence of the continuum invalidates, as already
stated previously [16,19], the applicability of the SMA,
that establishes the relation χL = Sgc/∆2

L between the
longitudinal susceptibility χL = dms/dHs and the gap.

For |ω| < 2∆T the dynamical structure factor in the
longitudinal channel has well-defined poles corresponding
to single particle excitations

SL(q, ω) = γ
gcS2

2εL(q)
{δ(ω − εL(q)) − δ(ω + εL(q))} (17)

where the prefactor γ is less than unity for Hs �= 0 and
gives the reduction of the quasi-particle weight. Since we
are going to consider the antiferromagnetic point q = 0,
here the longitudinal quasi-particle pole εL(q), given by
equation (15), is set equal to ∆L. It turns out [19] that γ
at q = 0 is given by the formula

γ =

{[
1 +

(ms/S)2

Γ 2
1 (ω2)

dΓ1(ω2)
dω2

]
ω=∆L

}−1

(18)

which shows a rapid decrease as a function of Hs, start-
ing from unity at Hs = 0 and saturating to a finite value
(γ = 0.279) for high fields. In equation (18) we have writ-
ten Γ1(ω2) in place of Γ1(0, ω) to emphasize its explicit
dependence on ω2.

As the field increases, the spectral weight that is lost
from the pole gets transferred to the multi-particle con-
tinuum, which starts at the two-particle threshold ω =
2∆T (Hs), which is consistent with the first moment sum
rule [19] for the dynamical structure factor. We can ob-
serve this phenomenon by calculating the continuum con-
tribution to the dynamical structure factor for some values
of the staggered field. In Figure 1 the quantity S(q, ω) is
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Fig. 1. Continuum contribution to the spin dynamical struc-
ture factor at the antiferromagnetic point q = 0, for Hs = 0.010
(dashed line), Hs = 0.020 (dotted line) and Hs = 0.027 (solid
line). As the staggered field increases, the integrated intensity
grows and the two-magnon threshold 2∆T (Hs) shifts forward.

plotted as a function of ω at the antiferromagnetic point
q = 0, for Hs = 0.027, Hs = 0.020 and Hs = 0.010. The
integrated intensity grows as the staggered field increases.
We also notice that this contribution starts always at the
two-magnon threshold ω = 2∆T (Hs), consistently with
experimental data [7,20] in which the continuum starts
well before the three magnon contribution as predicted by
the NLσM for a single chain in the absence of an external
staggered field [6]. The plots of S(0, ω) have been obtained
calculating the imaginary part of the longitudinal propa-
gator for |ω| > 2∆T (Hs), explicitly [19]

S(0, ω) =
g c m2 Γ2(ω)

(∆2
T − ω2)2(Γ2(ω))2 + (m/S + (∆2

T − ω2)Γ1(ω))2
(19)

where Γ2(ω) = g2c/(2ω
√

ω2 − 4∆2
T ) is the imaginary part

of the polarization bubble at q = 0. Consistently with
the main assumption of this paper, just above TN the
O(3) symmetry is restored by a slowly-varying staggered
field, so the splitting of the structure factor in two chan-
nels must be understood in an adiabatic way, justified by
the fact that the single chains involve fast processes as
compared with those taking place in the background right
above TN .

At Hs = 0.027 the value of the prefactor is γ = 0.746.
Hence, using the first moment sum rule we find that the
relative weight of the incoherent contribution to the struc-
ture factor is

1 − γ

3
≈ 8.5% (20)

which is consistent with the experimental value of 9(2)%.
In equation (20) the denominator 3 comes from the equi-
probability for an unpolarized neutron to create an excita-
tion in the longitudinal channel or in the two transversal
ones.

The present theory predicts the existence of a longitu-
dinal mode as well as of two (degenerate) transverse modes
with different energies. This fact would be consistent with
the presence of two peaks in the inelastic scattering mea-
surements with unpolarized neutrons. However, in the ex-
periments only one peak is observed. Remembering that
a similar problem arises in the case of R2BaNiO5 [20], we
argue that the longitudinal mode could be masked by its
proximity to the transversal one, by its reduced weight
(less than 1/2 of the transverse weight) and by the wide
broadening. We recall also that the persistence of a lon-
gitudinal mode below the ordering temperature TN has
been predicted in reference [21] again for the CsNiCl3 com-
pound, in the framework of a Ginzburg-Landau model.

In conclusion, we have proposed a theoretical scenario
that is able to explain both qualitatively and quantita-
tively the gap increase and the anomalous multiparticle
excitation weight observed in recent neutron scattering
experiments on CsNiCl3. This latter quantity turns out
to be much greater than the theoretical prediction for iso-
lated S = 1 chains. The results of the present work seem to
show that there is no need of invoking additional spin-1/2
excitations, as suggested by some authors [7]. We assume
the existence of a temperature range above TN , where the
3D effects are not at all negligible, although the overall
3D long-range order is destroyed, and we take into ac-
count the interaction with the background by modeling
it in terms of an effective staggered magnetic field. We
find that, even in the framework of a simple mean-field
theory, this scenario may account for the generation of
quite a sizable continuum weight, in good agreement with
the experimental results, as well as for an upward gap
renormalization and a reduction of the correlation length,
breaking also the SMA correspondence between these two
quantities. Finally, we have to mention that a more com-
plete theory of CsNiCl3 should take into account the ef-
fects of frustration caused by the triangular arrangement
of the 1D chains, and that they might contribute to the
enhancement of the gap for T > TN . However, we believe
that the sizable continuum starting from two-magnon con-
tributions that the experimentalists observe is clearly de-
scribed by the picture outlined in the present paper, and
it seems to us hard to think that frustration could lead to
similar results. In our attempt to interpret the apparently
anomalous experimental data on CsNiCl3 in the temper-
ature range TN < T < T ∗ (T ∗ � 12 K) we have tried
to stress that their origin can be traced to the fact that
there are actually, in this temperature range, two compet-
ing length and time scales, namely those related to the
3D order, that is destroyed above TN , and that play a rel-
evant role at large distances (small momenta) and times
(low frequencies) as compared with the length and time
scales proper of the single 1D chains, that are set by the
1D correlation length and by the inverse of the Haldane
gap, and which are the scales at which the interesting
physics of CsNiCl3 manifests itself. That is why we be-
lieve that, from the Néel temperature and up to around
the cross-over temperature T ∗, despite the fact that the
overall O(3) symmetry has been restored, the single chains
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still experience, on their characteristic scales, an effective
staggered field. Stressing once again that a more complete
theory is needed, the fact that the predictions of this sim-
ple model fit quite well the experimental data appears to
lend support to the model we are presenting here, and that
it should be the starting point for future investigations.

We would like to thank A.A. Nersesyan, P. Pieri and G. Sierra
for useful discussions.

References

1. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)
2. I. Affleck in: Fields, Strings and Critical Phenomena,
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